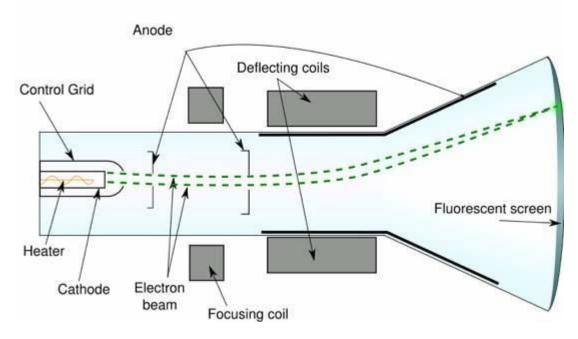
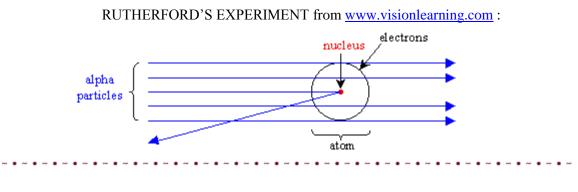

Ch. 3 Notes – THE STRUCTURE OF THE ATOM

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.


- I. Early Ideas About Matter
 - A. early "elements" air, fire, water, earth
 - B. <u>atom</u>—the smallest particle of an element retaining the properties of that element
 - C. early theories and ideas, pro and con
 - 1) *Democritus* of Abdera (460-370 B.C.)
 - a) first proposal of finitely divisible matter (could not test his ideas)
 - b) "atoma" / "atomos"—indivisible, indestructible particles in matter
 - 2) Aristotle (384-322 B.C.): did not believe in atoms
 - a) "hyle"— continuous state of all matter
 - b) His idea was widely accepted until the 17th century!
 - 3) Sir Isaac Newton (1642-1727) worked without proof to support atomic theory (Laws of physics, gravitation....)
 - 4) Robert Boyle (1627-1691) also worked to support atomic theory (gas laws, structured the scientific method, a founder of chem.)
 - 5) Antoine Lavoisier (1743-1794) "father of Modern Chemistry"
 - 6) **<u>atomic theory</u>**—matter is made up of atoms
 - D. Atomic Model Development
 - 1) *John Dalton* (1766-1844); his model (pub.1807) stated that atoms are indivisible
 - 2) J.J. Thomson; (1856-1940); work begun in 1897
 - a) adapted model with subatomic particles: protons and electrons
 - b) "plum pudding" model—electrons stuck in a proton lump
 - 3) E. Rutherford (1871-1937); model in 1911
 - a) nucleus as the dense center with p^+ and n^0 ; e^- outside it
 - b) the atom is mostly space (gold foil experiment)
 - 4) Niels Bohr (1885-1962); model proposed in 1913
 - a) nucleus as the center, composed of p^+ and n^0
 - b) *e- orbit the nucleus; similar to planetary motion*
 - c) e in an orbit have a fixed energy level
 - d) lowest energy levels are closest to the nucleus
 - e) *quantum*—a bundle of energy needed to make an electron "jump" to a higher level, which is a *quantum leap*
 - 5) quantum mechanical model
 - a) Erwin Schrödinger (1887-1961); model proposed 1926
 - b) based on probability of e⁻ location, not exact path
 - c) electron cloud model; "boundary surface diagram"
 - E. Atomic theory, conservation of matter, and recycling
 - 1) natural cycles: nitrogen, carbon, phosphorus, sulfur, water
 - 2) Laws of Conservation of Mass and Energy apply
 - F. Dalton's atomic theory (see next page)
 - 1) "Father of Atomic Theory" John Dalton (1766-1844)
 - 2) Dalton's Atomic Theory (1803)

DALTON'S ATOMIC THEORY

- 1) All elements are composed of submicroscopic particles called atoms.
- 2) Atoms are indivisible and indestructible.
 - (He didn't know about subatomic particles and how to split an atom.)
- 3) Atoms of the same element are identical. (Not really true, as we'll see later.) Atoms of different elements are different.
- 4) Atoms of elements can physically mix or form compounds by chemically combining in whole-number ratios. (Law of Multiple Proportions)
- 5) Chemical reactions involve the separation, joining, or rearranging of atoms. Atoms of an element are never changed into atoms of another element in a chemical reaction. (He didn't know about nuclear reactions.)
- II. Defining the Atom
 - A. <u>electrons</u> (e⁻) negatively charged subatomic particles
 - 1) characteristics
 - a) fixed charge of -1
 - b) very light mass $(9.11 \times 10^{-28} \text{ g})$; 1/1840 of a proton or neutron
 - c) they orbit the center: electrons are kept in motion so they don't fall into the positively-charged nucleus
 - 2) Sir William Crookes (1832-1919) discovered cathode rays in a CRT
 - a) *CRT (cathode ray tube)*—a closed glass tube with metal electrodes at the ends, containing low-density gases at low pressure, subjected to high voltage.
 - b) <u>cathode ray</u>— *glowing light beam* arising from the cathode (-) and traveling to the anode (+); composed of electrons
 - Sir Joseph John "J.J." Thomson (1856-1940) discovered e by CRT experiments
 - 4) Robert Millikan (1868-1953) oil drop experiments on e charge & mass


CATHODE RAY TUBE (CRT) from tutorcircle.com

- B. <u>protons</u> (*p*+)— *positively charged subatomic particles* (a hydrogen atom stripped of its electron is a "raw proton")
 - 1) characteristics
 - a) fixed charge of +1
 - b) same mass as a neutron $(1.67 \times 10^{-24} \text{ g})$
 - c) located in the center of an atom
 - 2) canal rays—positive CRT beam attracted to the cathode (found by Eugene Goldstein 1850-1930)
- C. <u>neutrons</u> (n^0) neutral subatomic particles
 - 1) characteristics
 - a) *fixed charge of 0*
 - b) same mass as a proton $(1.67 \times 10^{-24} \text{ g})$
 - c) located in the nucleus
 - 2) Sir James Chadwick (1891-1974) discovered the neutron
- D. other subatomic particles—(hundreds)
 - 1) leptons: muon, tau, neutrino
 - 2) baryons, composed of quark triplets & mesons etc.
- E. the nuclear model of the atom
 - 1) <u>**nucleus**</u>—central core of an atom containing p^+ and n^0
 - 2) very dense as compared to the rest of the atom
 - 3) the nucleus has an overall positive charge
- G. Rutherford's gold foil experiment
 - 1) Ernest Rutherford (1871-1937)
 - 2) shot a stream of alpha (α) particles at a sheet of gold foil
 - most of the particles went straight through (because the atoms are mostly empty space)
 - 4) a few particles were deflected (those that grazed a nucleus)
 - 5) even (~1/8000) fewer bounced directly back (those that hit a nucleus head-on)

THE ATOM IS MOSTLY EMPTY SPACE!

If an atom were the size of an average professional football stadium, the nucleus would be the size of a marble.

III. How atoms differ: Atomic numbers vs. atomic masses

A. <u>atomic number</u>—number of protons in the nucleus of an atom

- 1) characteristics
 - a) the atomic number is the unique I.D. number of an element
 - b) each element only has one atomic number
- 2) examples
 - E1) What is the atomic number of the following elements?

0	(8)	I (53)	Cl (17)	Au (79)

B. atomic neutrality

1) atoms are electrically neutral

number of protons = number of electrons in an atom

2) examples

- E2) How many electrons does Cu have? (29)
- E3) How many electrons does Rn have? (86)
- C. mass number—the total number of protons and neutrons in the nucleus

MASS NUMBER =	PROTONS + NEUTRONS
# OF NEUTRONS =	MASS NUMBER - ATOMIC NUMBER

Symbols can be written two ways:

mass number	12			
SYMBOL	С	OR	C - 12	
atomic number	6			

1) mass number is the total mass of the nucleus

2) Mass number is *not* the decimal number on the periodic table! (that's atomic mass)

3) examples

E4) How many p^+ , n^0 and e^- are in an atom of S-34?

S = sulfur, which is #16. S has 16 p^+ and because $\# \text{ p}^+ = \# \text{ e}^-$, S has 16 e^- . Mass number = 34. $\# n^0 = \text{mass } \#$ - atomic $\# = 34 \cdot 16 = 18 n^0$.

- E5) How many p^+ , n^0 and e^- are in an atom of 41
 - К? 19

K = potassium, which is #19. K has 19 p^+ and because # $\text{p}^+ = \text{# e}^-$, K has 19 e^- . Mass number = 41. # $n^0 = \text{mass } \text{# - atomic } \text{# = } 41-19 = 22 n^0$.

D. <u>Isotopes</u>—atoms of the same element that contain different numbers of neutrons

- 1) same number of p^+
- 2) different mass numbers
- 3) different atomic masses
- 4) in nature, most elements occur as a mix of two or more isotopes
- 5) examples of oxygen:

ISOTOPE	MASS #	ATOMIC #	\underline{p}^+	\underline{n}^0	e	
O-16	16	8	8	8	8	
O-17	17	8	8	9	8	
O-18	18	8	8	10	8	

Remember, $\# n^0 = mass number - atomic number$.

E. <u>atomic mass</u>—a weighted average based on mass and relative abundance of all naturally occurring isotopes of an element

ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) of natural isotope #1 + (MASS x RELATIVE ABUNDANCE) of natural isotope #2 + (MASS x RELATIVE ABUNDANCE) of natural isotope #3 ... etc.

- 1) unit is amu = atomic mass unit
- 2) synthetic isotopes (made in lab, not found in nature) are not considered
- E6) Magnesium has three isotopes: Mg-24, Mg-25, and Mg-26:

ISOTOPE	ABUNDANCE	ATOMIC MASS
Mg-24	78.70%	23.985
Mg-25	10.13%	24.986
Mg-26	11.17%	25.983

The atomic mass of Mg:

ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) (23.985)(0.7870) + (24.986)(0.1013) + (25.983)(0.1117) = 24.31 amu

- IV. Radioactive decay (overlap with Chapter 23)
 - A. Nuclear reactions
 - 1) <u>nuclear reactions</u>—chemical reactions converting matter to energy
 - 2) violate the Conservation Laws
 - 3) involves <u>transmutation</u>—the changing of one element into another element
 - B. Radioisotopes
 - 1) <u>radioisotopes</u> (radioactive isotopes or radionuclides)—radioactive forms of an element
 - 2) unstable isotopes which spontaneously release particles

- C. <u>half life</u>—the time it takes for half the amount of a radioisotope to decay (from a fraction of a second to thousands of years)
- D. <u>**radiation**</u>—*emissions from a radioactive material*; can be rays and/or particles

TYPES OF EMISSIONS:

- 1) alpha particle (α)
 - a) characteristics: made of He nuclei (2 protons, 2 neutrons); *positively charged*
 - b) low **penetrating power** (can't pass through matter easily)
 - c) alpha decay example:

²⁴¹ 95 Am
$$\rightarrow$$
 ²³⁷ 93 Np + ⁴₂ He

- 2) <u>beta particle</u> (β)
 - a) characteristics: made of electrons; negatively charged
 - b) intermediate penetrating power (smaller size than alphas)
 - c) beta decay example:

$$^{3}_{1}$$
 H \rightarrow $^{3}_{2}$ He + $^{0}_{-1}$ e

3) gamma radiation (γ)

- a) characteristics: made of electromagnetic (em) radiation, no charge
- b) high penetrating power (no charge, no mass)
- b) gamma decay example:

 $^{3}_{2}$ He \rightarrow $^{3}_{2}$ He + γ